
RHD/RHS STM32 Firmware Framework

 www.intantech.com ● support@intantech.com 1

intan
TECHNOLOGIES, LLC

 RHD/RHS

 STM32 Firmware Framework

Version 1.2
18 June 2025

Features
♦ Open-source STM32 firmware written in C to stream

real-time data from Intan RHD2216, RHD2132,
RHD2164, or RHS2116 electrophysiology amplifier
chips.

♦ Optimized SPI communication between STM32 MCU
and Intan RHD/RHS chip.

♦ Interrupt-based code using DMA (direct memory
access) allows for sampling rates up to 20 kSamples/s
per channel for 32 channels.

♦ Demonstration of streaming certain acquired data
channels, either in real time or offline, via USART

♦ RHS code includes triggered stimulation waveforms on
two channels

♦ Both HAL and LL libraries included.
♦ STM32U5 and STM32H7 series supported.

Applications
♦ Rapid prototyping of Intan Technologies RHD/RHS

amplifier-based products.
♦ Starting point for the development of custom interfaces

to RHD2216, RHD2132, RHD2164 or RHS2116 chips.

Description
To facilitate the development of electrophysiology recording
systems using the RHD or RHS series of microchips, Intan
Technologies provides the following open-source STM32
firmware framework for developers. The framework consists
of C code written for the commercially-available STM32U5
and STM32H7 microcontroller series produced by
STMicroelectronics. The example code streams multi-
channel data from Intan RHD or RHS chips at a sample rate
of 20 kSamples/s per channel using timers, interrupts, and
DMA to maintain high throughput while using only a small
fraction of the MCU capacity. RHS chip examples also
include stimulation on two independent channels, by default
triggered by a GPIO rising-edge on the pin routed to the blue
user button on the STM32 NUCLEO boards.

intan
TECHNOLOGIES, LLC

RHD/RHS STM32 Firmware Framework

 www.intantech.com ● support@intantech.com 2

intan
TECHNOLOGIES, LLC

Why is This Code Specific to the STM32U5 and STM32H7?
There are several series of STM32 microcontrollers with a very wide range of specifications suitable for different applications. The
example code we provide here is not an indication that only the STM32U5 and STM32H7 series will be the best fit for all projects
using Intan chips. However, there are some specific advantages that the U5 and H7 series have over other STM32 series that
make them a reasonable starting point for working with Intan chips.

The U5 series was launched in 2021 and is currently the most cutting-edge evolution of the well-established L series. It targets
ultra-low power applications while still having a maximum CPU clock rate of 160 MHz and robust peripheral support. The H7 series
was launched in 2017 and is designed for high performance, with a maximum CPU clock rate of 550 MHz. High-speed processing
and SPI data transmission / reception are the most important features for achieving high sample rate / high channel count
communication with Intan chips, and while we have not quite been able to reach the maximum data rate the Intan chips are
physically capable of supporting (30 kS/s for 32 amplifier channels + 3 auxiliary commands for RHD, or 16 amplifier channels + 4
auxiliary commands for RHS), we have gotten quite close (20 kS/s) with relative ease, using both the HAL (Hardware Abstraction
Layer) and LL (Low Layer) drivers, while also allowing for streaming of certain channels over USART. The U5 series is sufficient
for basic data acquisition from a single RHD2216, RHD2132, RHD2164 or RHS2116 chip and transmission of that data over a
USART interface. The H7 series can handle these same tasks while also running at a significantly higher clock rate, and this
boosted performance could help with any additional processing tasks that run alongside data acquisition. However, the H7 has
significantly less RAM, limiting the amount of memory that can be used for data storage, for example when storing data for offline
data transmission. Even those applications requiring a higher sample rate may be able to achieve this by optimizing the interface
to omit unnecessary features.

The most important features of the STM32U5 and STM32H7 used in the Intan RHD/RHS firmware framework are SPI (Serial
Peripheral Interface), timer-generated interrupts to achieve a reliable sample rate, and DMA (Direct Memory Access) to allow
multi-word transactions between memory and peripherals to occur without requiring direct processor intervention. Most
applications will also require some way to transmit acquired data somewhere or save it to memory, so peripherals for interacting
with USART, Ethernet, wireless systems, or SD cards will probably be useful, and our provided examples demonstrate transmission
of certain channels of acquired data over USART.

SPI Communication Requirements

A critical signal in the Intan SPI communication protocol is CS (active-low chip select, called NSS in the STM32) rising high,
remaining high for at least 154 ns, and then falling low between each 16-bit word (32-bit words for RHS). Unfortunately, the popular
STM32F4 series SPI bus does not appear to have an easy way to achieve this behavior. NSS is indeed driven low during each
16-bit word, but for these older STM32 chips, NSS is not toggled high between words, so the Intan chip does not receive the
clear NSS/CS high signal indicating the end of a 16-bit word (32-bit word for RHS).

This NSS/CS pulse between every SPI word is required for the Intan chip to operate correctly, so for the STM32F4 chips we are
forced to decouple NSS from the SPI peripheral and instead use a GPIO pin for CS. Unfortunately, this requires direct processor
intervention between every 16 or 32-bit word to write CS high, wait, and then write CS low again. This does allow the Intan chip
to communicate properly, but it wastes CPU clock cycles, and prohibits the use of DMA for bulk data transfers. While this approach
may be feasible for relatively low sample rates (5 kS/s or lower), it is inefficient and limits the communication between the MCU
and the Intan chip. This manual control of NSS/CS is necessary for the F4 series and other STM32 series with similar SPI buses.
(In theory it is possible to use a precisely-set timer tied to CS that is synchronized with the SPI bus to automate CS toggling, but
this complicates the SPI communication beyond the scope of entry-level demonstration code.)

The SPI bus implementation details can differ quite significantly between microcontroller series and manufacturer, so we strongly
encourage users research their proposed MCU’s SPI implementation to ensure shortcomings like this do not hinder or complicate
data transfer with the Intan chip. We have verified that the STM32U5 and STM32H7 series have SPI buses that can easily be
used with NSS automatically pulsing high between 16 or 32-bit words, and these series also work nicely with DMA for large data
transfers.

RHD/RHS STM32 Firmware Framework

 www.intantech.com ● support@intantech.com 3

intan
TECHNOLOGIES, LLC

How Does RHD2164 Firmware Differ from Other RHD Chips?
An important difference between the RHD2164 chip and its RHD2216 / RHD2132 cousins is that its SPI bus uses a Double Data
Rate (DDR) technique to transfer 32 bits of data, instead of 16 bits, from Intan chip to controller over a single chip select cycle.
Rather than the standard SPI implementation, which samples Master In Slave Out (MISO) at the rising edge of each Serial Clock
(SCLK) pulse, DDR samples at both the rising and falling edges. Master Out Slave In (MOSI) acts the same between standard
SPI and DDR implementations. Refer to the RHD2164 datasheet for further details on how DDR operates.

The RHD2164 chip’s use of DDR allows for the ability to stream twice as much data from the Intan chip to controller, but its non-
standard mode of SPI communication has historically only been achievable with an FPGA. With this firmware framework, at the
cost of increased complexity and use of additional peripherals, we demonstrate techniques that allow an STM32 microcontroller to
read and write across a DDR SPI interface

How the DDR SPI Signals Differ from Standard SPI

While the CS, SCLK, and MOSI signals have no change from standard SPI to DDR SPI, the MISO signal is sampled twice as fast.
Additionally, for standard SPI, the first valid MISO bit is sampled at the rising edge of the first SCLK pulse, but for DDR SPI, the
first valid MISO bit is sampled at the falling edge of the first SCLK pulse. Standard SPI yields 16 bits, in order, from most-to-least
significant bits, while DDR SPI yields 32 bits, interleaved, from most-to-least significant bits, containing contents from stream A
and stream B. These differences are illustrated in the standard SPI timing diagram (top) and the DDR SPI timing diagram (bottom):

Standard SPI timing

DDR SPI timing

RHD/RHS STM32 Firmware Framework

 www.intantech.com ● support@intantech.com 4

intan
TECHNOLOGIES, LLC

While standard SPI communication allows for straightforward use of a single SPI peripheral for both transmission and reception,
achieving DDR SPI with a single Intan chip requires use of two SPI peripherals (one for transmission, one for reception), use of
one or two timer peripherals (depending on factors like CPU clock rate, SPI peripheral clock speed, and desired SPI Baud rate, it
may be necessary for a second timer peripheral to introduce a delay) to generate a “pseudo-SCLK” signal, and extracting two
distinct 16-bit data words from the received, interleaved 32-bit data word.

Configuration of Two SPI Peripherals
For DDR, MOSI transmits 16-bit data words while MISO receives 32-bit data words. This is not a mode supported by any U5 or
H7 SPI peripherals, so it becomes necessary to dedicate one SPI bus (TRANSMIT_SPI) to transmission of 16-bit words on MOSI,
and a second SPI bus (RECEIVE_SPI) to reception of 32-bit words on MISO. Since the other SPI signals, (CS, SCLK) are no
different from standard SPI configuration, TRANSMIT_SPI is responsible for outputting CS, SCLK, and MOSI, configured as
Transmit Only Master, while RECEIVE_SPI is responsible only for receiving MISO configured as Receive Only Slave. (In this
mode, note that the MCU is considered the slave, so the data line that the STM32 peripheral RECEIVE_SPI refers to as “MOSI”
is actually the same line the Intan chip refers to as “MISO”.)

CS should be wired directly from TRANSMIT_SPI to RECEIVE_SPI. SCLK cannot be used as-is by RECEIVE_SPI, as the 16-bit
SCLK signal that actually reaches the Intan chip cannot be used by RECEIVE_SPI, which expects a 32-bit SCLK signal to sample
MISO. This requires the MCU to generate a 32-pulse “Pseudo-SCLK” at twice the real SCLK frequency, and delayed by half an
SCLK cycle, which must be connected to RECEIVE_SPI as its SCLK signal. The generation of Pseudo-SCLK is described in the
section below.

Use of Timers to Generate a 32-pulse Pseudo-SCLK
As can be seen in the above DDR SPI timing diagram, MISO needs to be sampled at both the rising and falling edge of the true
SCLK line, and the 32 samples start at the falling edge of SCLK, not the rising edge (there must be a delay between the true
SCLK’s first rising edge and Pseudo-SCLK’s first rising edge). So, the timer peripheral (TIM) can be used to generate a Pseudo-
SCLK which has rising edges that coincide with these rising/falling edges, and this Pseudo-SCLK is wired to RECEIVE_SPI’s
SCLK. The necessary synchronization between these SCLK signals can be visualized with this diagram:

The odd MISO samples correspond to data stream A and even MISO samples correspond to data stream B. The dotted blue lines
demonstrate how the falling/rising edges of True SCLK synchronize with the rising edges of Pseudo-SCLK.

For both the U5 and H7 MCUs, Pseudo-SCLK is output on the RECEIVE_SCLK_TIM, using PWM Generation and a Repetition
Counter of 31 to result in a 32-pulse signal. The provided clock configuration for the U5 just happens to have an inherent delay
between the timer trigger event (CS low) and the first RECEIVE_SCLK_TIM output that aligns perfectly with the necessary delay
between the True SCLK and Pseudo-SCLK rising edges, so no further configuration is necessary. However, the H7 runs
significantly faster, so use of a second timer (CS_DELAY_TIM) is necessary to introduce a configurable delay between the trigger
event and the first RECEIVE_SCLK_TIM output. In short, for the U5, CS triggers RECEIVE_SCLK_TIM, which outputs Pseudo-

RHD/RHS STM32 Firmware Framework

 www.intantech.com ● support@intantech.com 5

intan
TECHNOLOGIES, LLC

SCLK, while for the H7, CS triggers CS_DELAY_TIM, which after a short delay triggers RECEIVE_SCLK_TIM, which outputs
Pseudo-SCLK.

De-interleaving a Merged 32-bit Word into its 2 Component 16-bit Words
The configuration described above allows for RECEIVE_SPI to read data into MCU memory, but the data it receives contains 32
bits of data, such that every other bit corresponds to MISO stream A (odd bits) and MISO stream B (even bits). In order to extract
the original two 16-bit data words that were interleaved on the RHD2164 chip to form each 32-bit data word, it is necessary to de-
interleave the data at some point. The provided examples perform this operation in the “extract_ddr_words” function in the
“rhdinterface.c” function, which is called immediately after acquisition of each sample. However, it would also be possible to keep
the data in these 32-bit words and perform this extraction at some later point, and this may be helpful for applications that need to
maximize available processing time during acquisition and do not need immediate access to the extracted data.

The actual extraction in “extract_ddr_words” is explained in the code. A slow, but straightforward, implementation is commented
out in the code, and clearly demonstrates shifting every other bit into either word_A or word_B. However, this iterates 16 times
through a for loop, and uses many operations (multiplication, addition, bitwise-AND, bitwise-OR, and shifting) that result in very
slow execution, ultimately taking too long to finish before the next sample period and causing an ITClip Error at high sample rates.
A much faster, but less intuitive, implementation is actually used in the “morton_deinterleave” function. The code and comments
demonstrate the principle, inspired by Jeroen Baert’s blog post: “Morton encoding/decoding through bit interleaving:
Implementations”: https://www.forceflow.be/2013/10/07/morton-encodingdecoding-through-bit-interleaving-implementations/,
which avoids any for loops, and only uses a few bitwise-AND, bitwise-OR, and shifts to achieve the same results as the
straightforward implementation in a fraction of the time.

https://www.forceflow.be/2013/10/07/morton-encodingdecoding-through-bit-interleaving-implementations/

RHD/RHS STM32 Firmware Framework

 www.intantech.com ● support@intantech.com 6

intan
TECHNOLOGIES, LLC

How Does RHS Firmware Differ from RHD Chips?
While there are significant structural similarities between the RHD and RHS firmware, there are several differences that are
important to understand. These are due to the differences between the RHD and RHS chips, and due to the fundamental
differences in program goals – typically, RHS chips are used for current stimulation, so a significant portion of the RHS firmware
consists of RHS-only code to allow for on-the-fly communication with the Intan chip to control stimulation in real time alongside
acquisition.

Communication with the Intan Chip
The most significant difference between RHD and RHS SPI communication is the bit width of the SPI interface. RHD chips use
16-bit words, while RHS chips use 32-bit words. To preserve the ability of a single READ or WRITE command to access a single
register in its entirety, that means that the RHS registers are 32 bits in size instead of 16 bits. Also, since RHS chips have DC
amplifiers in addition to the RHD-identical AC amplifiers, a single CONVERT command can return the ADC conversion result of
both an AC and DC amplifier, as long as the D flag is set in the CONVERT command. The RHS firmware has been altered to
comply with these requirements, changing the SPI peripheral configuration and internal processing of data to handle 32 MOSI and
MISO bits instead of 16 bits.

Setting Stimulation Current Step Size
Each stimulation sequence (the structure of which is further explained below), specify a series of amounts of current and periods
of time for which to hold those currents. However, the units for these values are not fixed. The current step size, governed by
RHS register 34, can range from 10 nA to 10 µA. For example, if a stimulation Segment has a current magnitude of -5, and the
stim step size was set to 10 nA, then the actual current magnitude will be -50 nA. The file “rhsregisters.h” defines a function
“set_stim_step_size” which takes a StimStepSize enum (defined in the same file), allowing the user to easily set what the step size
should be in the RHSConfigParameters struct, so that subsequent writes to Register 34 based on this struct will set the actual
value on the RHS chip.

By default, this “set_stim_step_size” function is called in two locations in the example project. First, in “rhsregisters.c”, in the
“set_default_rhs_settings” function, the stim step size is set to 1 µA. Second, in “userfunctions.c”, in the
“configure_stim_sequences” function, the stim step size is set to 100 nA. Since the second function call is last “set” value that gets
written to the chip prior to acquisition/stimulation, this latest value is the actual step size that gets used, so for the example program,
the stim step size is 100 nA. This demonstrates not only where this value can be changed, but also how the stim step size can be
set and overwritten to take effect in the next stimulation/acquisition session.

Setting Stimulation Time Step Size
Similar to stimulation current step size, the time units for which stimulation Segments are defined are not fixed. However, instead
of this being governed by an RHS chip register, the period for a single time step is the equivalent to the period between TIM
interrupts (1 / sample rate). So, at the default sample rate of 20 kHz, each time step is 50 µs. For example, if a stimulation
Segment has a length of 500 and is run at a sample rate of 20 kHz, this Segment will hold its current for 25 ms. To change this
time step size, the user should change the sample rate – see the “Changing sample rate” section for details.

How Stimulation Scheduling Works
In order to allow users to specify stimulation sequences that execute when triggered (triggering is explained further in a later
section), it is necessary for the firmware to generate WRITE commands that can be sent to the RHS chip in real time so that
changes to parameters like stimulation magnitude and polarity can take effect at the right time, as well as logic to govern how many
timesteps should elapse between these commands to achieve desired timing characteristics of stimulation pulses. While users
can bypass the provided stimulation scheduler to write code to control all commands directly, it is useful for most general-purpose
programs to specify a standard by which stimulation can be scheduled in a uniform manner. By default, after the 16 CONVERT
commands in each timestep (sample period), there are four auxiliary command slots, and assuming the preprocessor macro
AUTO_STIM_CMD_MODE is defined, these four slots are reserved to issue necessary WRITE commands. The firmware includes
some logic to automatically send and, if necessary, queue multiple of these commands in case there are more than four WRITEs

RHD/RHS STM32 Firmware Framework

 www.intantech.com ● support@intantech.com 7

intan
TECHNOLOGIES, LLC

necessary at once (for instance, if multiple channels all require stimulation parameter changes within a short period of time) by
using a “command buffer”, the details of which can be examined in the “stimscheduler.h” and “stimscheduler.c” files.

The user can specify arbitrary stimulation shapes which will be executed by the stimulation scheduler by instantiating a
“StimSequence” object, a C struct that is defined in “stimscheduler.h”. The “create_manual_example_seqeunce” function within
the “userfunctions.c” file demonstrates how a sequence can be specified, and its use in “configure_stim_sequences”, while
commented out in favor of demonstrating auto-generate sequences, illustrates where a sequence specified manually in this way
is used. The StimSequence structure and its components are described in detail:

StimSequence: A structure containing the details of a specific sequence that executes on a single channel, initiated by a
single trigger event.

 uint16_t trigger_source: A number representing the trigger source for this stim sequence. 0 (default)
represents inactive or no trigger, 1 represents triggering from rising-edge activity on the GPIO defined as GPIO_EXTI13, routed to
the blue button for NUCLEO boards, and any other integers are left unimplemented but can be expanded by the user to include
triggers from other events, for example other GPIOs or timers.

 uint8_t channel: A number representing one of the 0-15 channels this stim sequence occurs on.

 uint32_t num_segments: A number representing the total number of user-defined “Segments” which are
present in this sequence. This must be less than MAX_SEGMENTS_PER_SEQUENCE (by default 594) and communicates to
the stimulation scheduler how many Segments are present for processing.

 int32_t loop_repeat: A number representing how many times a section of user-defined Segments should
loop. -1 for infinite, 0 for no loop, and positive number for a number of repeats. Note that the first run-through is not considered a
loop – if you wanted a range of Segments to execute 5 times, you would specify a loop_repeat of 4 since the first iteration is not a
repeat.

 uint32_t loop_start: Inclusive index of user-defined Segments where a loop should begin.

 uint32_t loop_end: Inclusive index of user-defined Segments where a loop should end.

 SequenceStatus status: Status variable used by software to monitor the state of this sequence (not necessary
for the user to alter this variable)

 Segments segments [MAX_SEGMENTS_PER_SEQUENCE] : Array of user-defined Segments.

Segment: A structure containing the description of a single horizontal line period, many of which make up a StimSequence.

 uint32_t length: Number of timesteps (1 / sample rate) this segment lasts for. For the first Segment of a
StimSequence (index 0), this field is not applicable, as this first Segment is the default resting state when stimulation is not actively
triggered.

 int32_t magnitude: When multiplied by stim step size, magnitude of the current sourced during stimulation (can
be positive or negative).

 bool fast_settle: True if fast_settle is active for this segment, false if inactive.

 bool charge_recovery: True if charge_recovery is active for this segment, false if inactive.

Here is an example StimSequence with its various Segments described in detail:

RHD/RHS STM32 Firmware Framework

 www.intantech.com ● support@intantech.com 8

intan
TECHNOLOGIES, LLC

Current units (magnitude) are stim step size, and time units (length) are timesteps (1 / sample rate). Segment 0 has a length of 1,
but this first Segment’s length is always N/A – this is the default resting state that the channel is before and after active stimulation,
so the length is irrelevant; since this has a magnitude of +10, this channel is held at +10 until the trigger event occurs. Then,
Segment 1 has a length of 300 and a magnitude of 0. Then, Segment 2 has a length of 500 and a magnitude of +50. Then,
Segment 3 has a length of 500 and a magnitude of -50. Because the StimSequence has a loop_repeat value of -1, that means
segments between loop_start and loop_end repeat indefinitely; for non-negative values, those Segments would repeat that many
times. So after Segment 3 (loop_end), the sequence goes back to Segment 2 (loop_start) and continues repeating until the
acquisition loop ends.

Creating Common Auto-Generated Sequences
While it’s possible to manually specify StimSequence structures for complex or infinitely repeating stimulation pulses, commonly
used sequences of biphasic and triphasic stimulation waveforms can be easily auto-generated by the user, so that the
StimSequence and its component Segments are automatically populated by the program. Two example waveforms, one biphasic
and one triphasic, are populated, validated, and created into their respective StimSequences in the configure_stim_sequences
function in the userfunctions.c file. These structures could be modified by the user to fit their desired waveform shapes. If new
structures are created, they can be validated and assigned to a position in the ‘sequences’ array in the same manner the examples
are. The “validate” functions check the user-provided parameters for any rule violations (for example, assigning to a non-existent
channel or setting the charge recovery “off” signal before the charge recovery “on” signal) and if any are discovered, the program
enters an infinite loop, the red LED is illuminated, and the InvalidStimWaveform error is set. Users can run their program in Debug

RHD/RHS STM32 Firmware Framework

 www.intantech.com ● support@intantech.com 9

intan
TECHNOLOGIES, LLC

mode to trace the function call stack to determine which specific rule violations are occurring, and then change their structure
initialization accordingly. The BiphasicWaveform and TriphasicWaveform structures and their components are described in detail:

BiphasicWaveform: A structure fully describing the characteristics of a biphasic pulse or pulse train.

 These characteristics are generally analogous to the user-configurable parameters from the Intan RHX software:

 uint8_t channel: A number representing one of the 0-15 channels this waveform should occur on.

 uint8_t trigger_source: A number representing the trigger source for this stim sequence. 0 (default)
represents inactive or no trigger, 1 represents triggering from rising-edge activity on the GPIO defined as GPIO_EXTI13, routed to
the blue button for NUCLEO boards, and any other integers are left unimplemented but can be expanded by the user to include
triggers from other events, for example other GPIOs or timers.

 uint32_t num_pulses: A number representing how many pulses this waveform should consist of. A single
biphasic pulse (amplitude 1, optional interphase delay, amplitude 2) can be specified with a value of 1 – a pulse train repeating a
certain number of times can be specified with a larger number. This value is limited to a maximum value of
MAX_NUM_PULSES_PER_TRAIN (default 99), which can be increased by the user at the cost of increased memory usage.

 uint32_t pulse_train_period: If num_pulses is greater than 1, a number representing the number of
timesteps (each timestep is 1 / sample rate) between the start of each pulse within the pulse train. If num_pulses is equal to 1,
this must be set to 0 as it’s not applicable to single pulses.

RHD/RHS STM32 Firmware Framework

 www.intantech.com ● support@intantech.com 10

intan
TECHNOLOGIES, LLC

 int16_t resting_amplitude: In units of stim step size, the resting current amplitude at which this channel
will be held before and after stimulation pulses (and, if interphase delay is not 0, between the first and second phases).

int16_t first_phase_amplitude: In units of stim step size, the current amplitude at which this channel
will be held during the first stimulation phase, for a period governed by first_phase_duration.

int16_t second_phase_amplitude: In units of stim step size, the current amplitude at which this channel
will be held during the second stimulation phase, for a period governed by second_phase_duration.

uint32_t post_trigger_delay: The number of timesteps (each timestep is 1 / sample rate) after the trigger
event specified in trigger_source occurs, but before the first phase of stimulation occurs. Can be set to 0 for instant stimulation as
soon as the trigger occurs.

uint32_t first_phase_duration: The number of timesteps (each timestep is 1 / sample rate) the
specified channel is held at first_phase_amplitude during the first phase of stimulation. Can be set to 0 to skip the first phase.

uint32_t interphase_delay: The number of timesteps (each timestep is 1 / sample rate) the specified
channel is held at resting_amplitude between the first and second phases of stimulation. Can be set to 0 to skip any interphase
delay.

uint32_t second_phase_duration: The number of timesteps (each timestep is 1 / sample rate) the
specified channel is held at the specified second_phase_amplitude during the second phase of stimulation. Can be set to 0 to skip
the second phase.

uint32_t refractory_period: The number of timesteps (each timestep is 1 / sample rate) after the second
stimulation phase ends for which subsequent triggers are ignored. This must be at least as large as the largest of
post_stim_amp_settle, post_stim_charge_recovery_on, and post_stim_charge_recovery_off.

bool enable_amp_settle: Whether amp settle should be enabled at any point during this waveform. If true,
the amp settle characteristics are further described with pre_stim_amp_settle, post_stim_amp_settle, and maintain_amp_settle.
Whether the traditional fast settle or switching lower cutoff frequency method is used is governed by the #define
TRADITIONAL_FAST_SETTLE macro in “userconfig.h”.

uint32_t pre_stim_amp_settle: The number of timesteps (each timestep is 1 / sample rate) before the
first stimulation phase occurs for which amp settle is active. This number should not be larger than post_trigger_delay. If
enable_amp_settle is false, this must be set to 0 as it’s not applicable.

uint32_t post_stim_amp_settle: The number of timesteps (each timestep is 1 / sample rate) after the
second stimulation phase finishes for which amp settle is active. This number should not be larger than post_trigger_delay. If
enable_amp_settle is false, this must be set to 0 as it’s not applicable.

bool maintain_amp_settle: Whether amp settle should be maintained across all pulses within a pulse train.
If true, amp settle will be held high even during the inactive portion of pulse_train_period during which stimulation is not occurring.
If false, amp settle will only be held high in the periods before, during, and after each individual pulse within a pulse train. If
enable_amp_settle is false, this must be set to 0 as it’s not applicable.

bool enable_charge_recovery: Whether post-stimulation charge recovery should be enabled at any point
during this waveform. If true, the charge recovery characteristics are further described with post_stim_charge_recovery_on and
post_stim_charge_recovery_off. Whether the charge recovery switch or current-limited charge recovery circuit is used is used is
governed by the #define CHARGE_RECOVERY_SWITCH macro in “userconfig.h”.

uint32_t post_stim_charge_recovery_on: The number of timesteps (each timestep is 1 / sample
rate) after the second stimulation phase finishes before the charge recovery function begins. This number should not be larger
than post_trigger_delay, or larger than post_stim_charge_recovery_off. If enable_charge_recovery is false, this must be set to 0
as it’s not applicable.

uint32_t post_stim_charge_recovery_off: The number of timesteps (each timestep is 1 / sample
rate) after the second stimulation phase finishes before the charge recovery function ends. This number should not be larger than
post_trigger_delay, or smaller than post_stim_charge_recovery_on. If enable_charge_recovery is false, this must be set to 0 as
it’s not applicable.

RHD/RHS STM32 Firmware Framework

 www.intantech.com ● support@intantech.com 11

intan
TECHNOLOGIES, LLC

TriphasicWaveform: A structure fully describing the characteristics of a triphasic pulse or pulse train.

 These characteristics are generally analogous to the user-configurable parameters from the Intan RHX software:

 uint8_t channel: A number representing one of the 0-15 channels this waveform should occur on.

 uint8_t trigger_source: A number representing the trigger source for this stim sequence. 0 (default)
represents inactive or no trigger, 1 represents triggering from rising-edge activity on the GPIO defined as GPIO_EXTI13, routed to
the blue button for NUCLEO boards, and any other integers are left unimplemented but can be expanded by the user to include
triggers from other events, for example other GPIOs or timers.

 uint32_t num_pulses: A number representing how many pulses this waveform should consist of. A single
biphasic pulse (amplitude 1, amplitude 2, amplitude 3) can be specified with a value of 1 – a pulse train repeating a certain number
of times can be specified with a larger number. This value is limited to a maximum value of MAX_NUM_PULSES_PER_TRAIN
(default 99), which can be increased by the user at the cost of increased memory usage.

 uint32_t pulse_train_period: If num_pulses is greater than 1, a number representing the number of
timesteps (each timestep is 1 / sample rate) between the start of each pulse within the pulse train. If num_pulses is equal to 1,
this must be set to 0 as it’s not applicable to single pulses.

 int16_t resting_amplitude: In units of stim step size, the resting current amplitude at which this channel
will be held before and after stimulation pulses.

int16_t first_phase_amplitude: In units of stim step size, the current amplitude at which this channel
will be held during the first stimulation phase, for a period governed by first_phase_duration.

RHD/RHS STM32 Firmware Framework

 www.intantech.com ● support@intantech.com 12

intan
TECHNOLOGIES, LLC

int16_t second_phase_amplitude: In units of stim step size, the current amplitude at which this channel
will be held during the second stimulation phase, for a period governed by second_phase_duration.

int16_t third_phase_amplitude: In units of stim step size, the current amplitude at which this channel
will be held during the third stimulation phase, for a period governed by third_phase_duration.

uint32_t post_trigger_delay: The number of timesteps (each timestep is 1 / sample rate) after the trigger
event specified in trigger_source occurs, but before the first phase of stimulation occurs. Can be set to 0 for instant stimulation as
soon as the trigger occurs.

uint32_t first_phase_duration: The number of timesteps (each timestep is 1 / sample rate) the
specified channel is held at first_phase_amplitude during the first phase of stimulation. Can be set to 0 to skip the first phase.

uint32_t second_phase_duration: The number of timesteps (each timestep is 1 / sample rate) the
specified channel is held at the specified second_phase_amplitude during the second phase of stimulation. Can be set to 0 to skip
the second phase.

uint32_t third_phase_duration: The number of timesteps (each timestep is 1 / sample rate) the
specified channel is held at the specified third_phase_amplitude during the third phase of stimulation. Can be set to 0 to skip the
third phase.

uint32_t refractory_period: The number of timesteps (each timestep is 1 / sample rate) after the third
stimulation phase ends for which subsequent triggers are ignored. This must be at least as large as the largest of
post_stim_amp_settle, post_stim_charge_recovery_on, and post_stim_charge_recovery_off.

bool enable_amp_settle: Whether amp settle should be enabled at any point during this waveform. If true,
the amp settle characteristics are further described with pre_stim_amp_settle, post_stim_amp_settle, and maintain_amp_settle.
Whether the traditional fast settle or switching lower cutoff frequency method is used is governed by the #define
TRADITIONAL_FAST_SETTLE macro in “userconfig.h”.

uint32_t pre_stim_amp_settle: The number of timesteps (each timestep is 1 / sample rate) before the
first stimulation phase occurs for which amp settle is active. This number should not be larger than post_trigger_delay. If
enable_amp_settle is false, this must be set to 0 as it’s not applicable.

uint32_t post_stim_amp_settle: The number of timesteps (each timestep is 1 / sample rate) after the
third stimulation phase finishes for which amp settle is active. This number should not be larger than post_trigger_delay. If
enable_amp_settle is false, this must be set to 0 as it’s not applicable.

bool maintain_amp_settle: Whether amp settle should be maintained across all pulses within a pulse train.
If true, amp settle will be held high even during the inactive portion of pulse_train_period during which stimulation is not occurring.
If false, amp settle will only be held high in the periods before, during, and after each individual pulse within a pulse train. If
enable_amp_settle is false, this must be set to 0 as it’s not applicable.

bool enable_charge_recovery: Whether post-stimulation charge recovery should be enabled at any point
during this waveform. If true, the charge recovery characteristics are further described with post_stim_charge_recovery_on and
post_stim_charge_recovery_off. Whether the charge recovery switch or current-limited charge recovery circuit is used is used is
governed by the #define CHARGE_RECOVERY_SWITCH macro in “userconfig.h”.

uint32_t post_stim_charge_recovery_on: The number of timesteps (each timestep is 1 / sample
rate) after the third stimulation phase finishes before the charge recovery function begins. This number should not be larger than
post_trigger_delay, or larger than post_stim_charge_recovery_off. If enable_charge_recovery is false, this must be set to 0 as it’s
not applicable.

uint32_t post_stim_charge_recovery_off: The number of timesteps (each timestep is 1 / sample
rate) after the third stimulation phase finishes before the charge recovery function ends. This number should not be larger than
post_trigger_delay, or smaller than post_stim_charge_recovery_on. If enable_charge_recovery is false, this must be set to 0 as
it’s not applicable.

RHD/RHS STM32 Firmware Framework

 www.intantech.com ● support@intantech.com 13

intan
TECHNOLOGIES, LLC

Triggering Stimulation from Interrupts
In addition to properly setting up a stimulation sequence manually via the StimSequence struct or automatically via the
BiphasicWaveform or TriphasicWaveform structs, it’s also necessary to set up the stimulation triggers to flag when certain events
occur. By default, the example stimulation waveforms are triggered off a rising edge on the GPIO pin routed to the blue button
on the NUCLEO board, but any interrupt (for example, from a timer if stimulation needs to trigger at a fixed frequency) can be
used to flag a trigger.

In the STM32-generated interrupt .c source file (“stm32u5xx_it.c” or “stm32h7xx_it.c”), the “process_trigger(N)” function needs to
be called with N as a unique integer representing a specific trigger. See how process_trigger(1) is called by default for the EXTI
trigger as an example, using either HAL or LL. This N value should match the trigger_source value for this stimulation sequence
or auto-generated biphasic/triphasic waveform. Note that the maximum value for N is limited to NUM_STIM_SEQUENCES,
(defined in “userconfig.h”) which is by default limited to 2. This number can be increased by the user, but this increases the
amount of required memory, so alterations may be necessary to avoid running out memory during execution.

Observing the Compliance Monitor
A useful feature of the RHS chip is a compliance monitor present on each channel to flag when the compliance voltage is
reached. If, due to a high electrode impedance, the current specified cannot be provided without reaching the VSTIM+ and
VSTIM- voltages (by default, these projects are configured for ±7 V), the RHS chip flags the compliance monitor for this channel
so the user can detect this problematic condition. In “rhsinterface.c”, the function “process_compliance_data” demonstrates how
any READ commands of the compliance monitor can have their results processed and handled by the software. By default, if
any compliance monitor is flagged, the software writes the Compliance_Monitor_Pin high and continues execution, but users
may want to alter this behavior.

An important note is that when a compliance monitor READ command is issued, the software expects to find a result with the
returned data conforming to the result of a READ command – even if a compliance monitor violation occurs, the SPI word
returning that data should have a valid READ prefix. If the returned data has some other prefix (usually indicating a problem with
the SPI interface, an Intan chip not actually being present, or for some reason the software failing to locate a 2-command later
result from a READ command), a specific error InvalidComplianceReading is triggered, and an infinite loop is entered. If the user
wishes to change this behavior to handle this condition (for example, be able to run the software without an Intan chip for testing
purposes without entering this error loop), they can change the contents of “locate_compliance_result” in “rhsinterface.c”, or to
bypass this compliance monitor check entirely, comment out the “process_compliance_data()” call in “spi_txrx_cplt_callback” in
“rhsinterface.c”.

RHD/RHS STM32 Firmware Framework

 www.intantech.com ● support@intantech.com 14

intan
TECHNOLOGIES, LLC

Overview of Program Flow
This Intan STM32 example code was developed using STM32CubeIDE, and uses HAL or LL drivers (this can easily be changed
by the user) to configure and control various peripherals. There are six distinct projects:

1. U5 rhd_acquisition – communication using standard SPI to run acquisition with an RHD2216 or RHD2132 and transmit
acquired data (either in real-time alongside acquisition or offline, after a set period of time) via USART with an STM32U5
chip.

2. U5 rhd2164_acquisition – communication using DDR SPI to run acquisition with an RHD2164 and transmit acquired data
(either in real-time alongside acquisition or offline, after a set period of time) via USART with an STM32U5 chip.

3. U5 rhs_acquisition – communication using RHS SPI to run acquisition with an RHS2116, transmit acquired data (either
in real-time alongside acquisition or offline, after a set period of time) via USART with an STM32U5 chip. Additionally, a
rising-edge event on a dedicated GPIO pin (by default, blue user button on the NUCLEO board) during acquisition triggers
user-configurable stimulation pulses.

4. H7 rhd_acquisition – communication using standard SPI to run acquisition with an RHD2216 or RHD2132 and transmit
acquired data (either in real-time alongside acquisition or offline, after a set period of time) via USART with an STM32H7
chip.

5. H7 rhd2164_acquisition – communication using DDR SPI to run acquisition with an RHD2164 and transmit acquired data
(either in real-time alongside acquisition or offline, after a set period of time (via USART with an STM32H7 chip.

6. H7 rhs_acquisition – communication using RHS SPI to run acquisition with an RHS2116, transmit acquired data (either
in real-time alongside acquisition or offline, after a set period of time) via USART with an STM32H7 chip. Additionally, a
rising-edge event on a dedicated GPIO pin (by default, blue user button on the NUCLEO board) during acquisition triggers
user-configurable stimulation pulses.

These all follow the same general structure, and only have differences based on the specific implementations for the U5 or H7
chip, whether standard SPI, DDR SPI, or RHS SPI is used, and which registers are present on the specific Intan chip.

The code first configures and initializes the MCU peripherals with various auto-generated functions, which the STM32CubeIDE
environment creates based on various settings in the .ioc file. Parameters for configuring the Intan chip are then used to determine
values for each of the RHD/RHS registers, and these are written to the chip using WRITE commands over the SPI bus. For RHD,
a list of 32 CONVERT commands (one for each channel of an RHD chip) and a list of three auxiliary commands (one of which
continually re-writes the above-determined register values to the RHD chip) are created and stored in memory as
command_sequence_MOSI for later use. For RHS, there are 16 CONVERT commands (one for each channel) and a list of four
auxiliary commands. The green LED is illuminated to indicate when data acquisition starts, and a timer interrupt is enabled. The
various projects run at different clock cycles, but for each project the INTERRUPT_TIM peripheral is configured with compensating
settings to trigger at 20 kHz. We will refer to this timer period as the sample period. The program then enters a data acquisition
loop.

This data acquisition loop will only break when the loop_escape() function returns 1, which will not occur until the number of
acquired samples reaches 10000, meaning 0.5 seconds of data have been acquired. Until that time, this main loop will repeatedly
write a dedicated pin Main_Monitor_Pin high, which can be used to monitor when this main loop is processing. (Other functions
that trigger due to interrupts will keep this pin low for the duration of their execution). Because timer interrupts had just been
enabled, this loop will consistently pause every sample period to execute sample_processing_routine().

The sample_processing_routine() function executes once per sample period and begins sending a sequence of SPI commands.
By default, for RHD: this function sends 35 commands: 32 CONVERT commands + 3 auxiliary commands, where each command
is a 16-bit SPI word. For RHS: this function sends 20 commands: 16 CONVERT commands + 3 auxiliary commands, where each
command is a 32-bit SPI word. In addition to beginning the SPI transfer, this routine also writes the Main_Monitor_Pin low. (The
main loop will write it high once it begins executing again.) The function also writes a dedicated Interrupt_Monitor_Pin high only
for the duration of the function, and does some error checking. The SPI transfer uses DMA to iterate through the full 35 or 20-
command list and this routine only begins the transfer, so by the time the routine finishes the command sequence will have only
just begun.
An important detail of sample_processing_routine() is that it checks to make sure that the previous SPI sequence is complete; if
the variable command_transfer_state (discussed below) is still TRANSFER_WAIT from the previous sequence, then the critical
SampleClip error has occurred. This error, as well as methods to avoid it, are discussed in more detail later. Briefly, this error
indicates that the sample period is shorter than the time required for each SPI sequence, so every sample period the next sequence
is being triggered before the previous one finishes. This can be solved by extending the sample period (i.e., using a lower sample

RHD/RHS STM32 Firmware Framework

 www.intantech.com ● support@intantech.com 15

intan
TECHNOLOGIES, LLC

rate) or speeding up each SPI sequence (e.g., sample fewer channels, use fewer AUX commands, or speed up the SPI transfer
itself, if possible).

Eventually, one complete SPI transfer sequence will end. The exact way this is detected varies slightly based on whether LL or
HAL drivers are used, but in both cases an interrupt triggers the function spi_rx_cplt_callback() or spi_txrx_cplt_callback(). The
write_data_to_memory() function is then executed, which is a user-changeable function that by default writes the result of a single
CONVERT command (i.e., a sample from a single channel from an RHD2216, RHD2132, or RHS2116, or two A and B samples
from an RHD2164) to memory, but this only happens if OFFLINE_TRANSFER is defined. Then, transmit_data_realtime() is
executed, which by default transmits a few channels of data over USART, using DMA for improved efficiency, but this only happens
if OFFLINE_TRANSFER is not defined. The variable command_transfer_state is changed; it is set to TRANSFER_WAIT once the
transfer begins, TRANSFER_COMPLETE once the transfer finishes, and TRANSFER_ERROR if some error was detected.

The main loop will continue to run, pausing for an interrupt every sample period, until loop_escape() returns 1. If
OFFLINE_TRANSFER is not defined, loop_escape() will always return 0 so the loop will never escape, so the program will simply
continue looping with occasional interrupts. This is suitable behavior for long-term data acquisition that is not directly saved to
memory, but transmitted elsewhere in real time every sample period. The example code is set to either escape the loop after one
second of data acquisition and disable further timer interrupts (OFFLINE_TRANSFER is defined) or stay within the loop, streaming
data in real time alongside acquisition (OFFLINE_TRANSFER is not defined).

If the loop is escaped (only occurs if OFFLINE_TRANSFER is defined), the user-changeable function transmit_data_offline() is
called, which by default sends the 10000 accumulated samples from a chosen channel out via USART in many small DMA
transfers. Note that the on-chip memory limitations of the STM32 will not allow for long recordings (exact memory limitations
depend on the specific STM32 chip used), especially at high sample rates and channel counts, unless the data is transmitted
elsewhere so the used memory can be freed.

For the RHS projects, if AUTO_STIM_CMD_MODE is defined, then a rising-edge signal on a specific GPIO (mapped to the blue
user button on all NUCLEO projects so that pressing this button acts as a rising-edge) during acquisition will trigger user-specified
stimulation pulses on 2 channels. The channels that are activated, the pulses themselves, and the triggers can be completely
configured by the user.

Finally, the green LED is switched off, indicating both data acquisition and transmission have completed, and the program enters
a final infinite loop.

RHD/RHS STM32 Firmware Framework

 www.intantech.com ● support@intantech.com 16

intan
TECHNOLOGIES, LLC

I/O Pins
This example code was developed on an STMicroelectronics NUCLEO-U5A5ZJ-Q development board (for U5 code), and a
NUCLEO-H723ZG development board (for H7 code). The I/O pins were chosen to be easily accessible when using these boards.
Any changes to I/O pin assignments should be made through the rhd_acquisition.ioc, rhd2164_acquisition.ioc or rhs_acquisition.ioc
file.

U5 rhd_acquisition

SPI (SPI)

NSS (CS): PA4 – should be connected to Intan CS.

SCK (SCLK): PC10 – should be connected to Intan SCLK.

MISO: PC11 – should be connected to Intan MISO.

MOSI: PC12 – should be connected to Intan MOSI.

Timing
Interrupt_Monitor: PD9 - written high each sample period, so its frequency represents amplifier sample rate.

Main_Monitor: PC8 - written high as long as main loop is processing, so its duty cycle approximates free CPU
clock cycles that could be used for other processing tasks.

User Communication
ErrorCode_Bit_3: PE0

ErrorCode_Bit_2: PG8

ErrorCode_Bit_1: PG5

ErrorCode_Bit_0: PG6

LED_GREEN (Acquisition underway): PC7

LED_RED (Error detected – check bits 3-0): PG2

RHD/RHS STM32 Firmware Framework

 www.intantech.com ● support@intantech.com 17

intan
TECHNOLOGIES, LLC

U5 rhd2164_acquisition
TRANSMIT_SPI (SPI3)

NSS (CS): PA4 – should be wired to RECEIVE_SPI NSS (PB0) so that RECEIVE_SPI shares the same NSS
signal as TRANSMIT_SPI, as well as RECEIVE_SCLK_TIM ETR (PE7) so that Pseudo-SCLK generation is
triggered off NSS. Also, should be connected to Intan CS.

SCK (SCLK): PC10 – should be connected to Intan SCLK.

MOSI: PC12 – should be connected to Intan MOSI.

RECEIVE_SPI (SPI1)

NSS (CS): PB0 – should be wired to TRANSMIT_SPI NSS (PA4) so that RECEIVE_SPI shares the same
NSS signal as TRANSMIT_SPI.

SCK (SCLK): PC10 – should be wired to Pseudo-SCLK signal generated by RECEIVE_SCLK_TIM CH1
(PE9).

MOSI: PA7 – RECEIVE_SPI is configured as slave while the Intan naming convention refers to the MCU as
master, so should be connected to Intan MISO.

Timing
Interrupt_Monitor: PD9 - written high each sample period, so its frequency represents amplifier sample rate.

Main_Monitor: PC8 - written high as long as main loop is processing, so its duty cycle approximates free CPU
clock cycles that could be used for other processing tasks.

TIM1_ETR (RECEIVE_SCLK_TIM External Trigger): PE7 – should be wired to TRANSMIT_SPI NSS (PA4) so
RECEIVE_SCLK_TIM timer, which generates a 32-pulse Pseudo-SCLK signal, is triggered off NSS.

TIM1_CH1 (RECEIVE_SCLK_TIM Channel 1 Output): PE9 – should be wired to RECEIVE_SPI SCK (PC10)
so RECEIVE_SCLK_TIM output, 32-pulse Pseudo-SCLK signal, feeds into RECEIVE_SPI as SCLK.

User Communication
ErrorCode_Bit_3: PE0

ErrorCode_Bit_2: PG8

ErrorCode_Bit_1: PG5

ErrorCode_Bit_0: PG6

LED_GREEN (Acquisition underway): PC7

LED_RED (Error detected – check bits 3-0): PG2

RHD/RHS STM32 Firmware Framework

 www.intantech.com ● support@intantech.com 18

intan
TECHNOLOGIES, LLC

U5 rhs_acquisition
SPI (SPI1)

NSS (CS): PA4 – should be connected to Intan CS.

SCK (SCLK): PA1 – should be connected to Intan SCLK.

MISO: PA6 – should be connected to Intan MISO.

MOSI: PA7 – should be connected to Intan MOSI.

Timing
Interrupt_Monitor: PD9 - written high each sample period, so its frequency represents amplifier sample rate.

Main_Monitor: PC8 - written high as long as main loop is processing, so its duty cycle approximates free CPU
clock cycles that could be used for other processing tasks.

User Communication
ErrorCode_Bit_3: PE0

ErrorCode_Bit_2: PG8

ErrorCode_Bit_1: PG5

ErrorCode_Bit_0: PG6

LED_GREEN (Acquisition underway): PC7

LED_RED (Error detected – check bits 3-0): PG2

Stimulation
Compliance Monitor: PG13 – written high when any channel’s compliance monitor is set high, indicating that
the electrode voltage becomes so high or low that it becomes impossible to deliver the specified current.

GPIO_EXTI13: PC13 – routed to blue button on NUCLEO boards by default, and during acquisition if
AUTO_STIM_CMD_MODE is defined, triggers stimulation.

H7 rhd_acquisition

SPI (SPI3)

NSS (CS): PA4 – should be connected to Intan CS.

SCK (SCLK): PC10 – should be connected to Intan SCLK.

MISO: PC11 – should be connected to Intan MISO.

MOSI: PB2 – should be connected to Intan MOSI.

Timing
Interrupt_Monitor: PD9 - written high each sample period, so its frequency represents amplifier sample rate.

Main_Monitor: PC8 - written high as long as main loop is processing, so its duty cycle approximates free CPU
clock cycles that could be used for other processing tasks.

User Communication
ErrorCode_Bit_3: PE0

ErrorCode_Bit_2: PG8

ErrorCode_Bit_1: PG5

ErrorCode_Bit_0: PG6

RHD/RHS STM32 Firmware Framework

 www.intantech.com ● support@intantech.com 19

intan
TECHNOLOGIES, LLC

LED_GREEN (Acquisition underway): PC7

LED_RED (Error detected – check bits 3-0): PG2

H7 rhd2164_acquisition

TRANSMIT_SPI (SPI3)

NSS (CS): PA4 – should be wired to RECEIVE_SPI NSS (PA15) so that RECEIVE_SPI shares the same
NSS signal as TRANSMIT_SPI, as well as CS_DELAY_TIM ETR (PA0) so that Pseudo-SCLK generation is
triggered off NSS. Also, should be connected to Intan CS.

SCK (SCLK): PC10 – should be connected to Intan SCLK.

MOSI: PB2 – should be connected to Intan MOSI.

RECEIVE_SPI (SPI1)

NSS (CS): PA15 – should be wired to TRANSMIT_SPI NSS (PA4) so that RECEIVE_SPI shares the same
NSS signal as TRANSMIT_SPI.

SCK (SCLK): PA5 – should be wired to Pseudo-SCLK signal generated by RECEIVE_SCLK_TIM CH1
(PE9).

MOSI: PD7 – RECEIVE_SPI is configured as slave while the Intan naming convention refers to the MCU as
master, so should be connected to Intan MISO.

Timing
Interrupt_Monitor: PD9 - written high each sample period, so its frequency represents amplifier sample rate.

Main_Monitor: PC8 - written high as long as main loop is processing, so its duty cycle approximates free CPU
clock cycles that could be used for other processing tasks.

TIM2_ETR (CS_DELAY_TIM External Trigger): PA0 – should be wired to TRANSMIT_SPI NSS (PA4) so
CS_DELAY_TIM timer, which ultimately leads to generation of a 32-pulse Pseudo-SCLK signal, is triggered
off NSS.

TIM2_CH3 (CS_DELAY_TIM Channel 3 Output): PB10 – not connected to any hardware, but can be probed
to see CS_DELAY_TIM output visualize intentional delay added between NSS and 32-pulse Pseudo-SCLK
signal. Internally (through .ioc) connected to trigger RECEIVE_SCLK_TIM.

TIM1_CH1 (RECEIVE_SCLK_TIM Channel 1 Output): PE9 – should be wired to RECEIVE_SPI SCK (PA5) so
RECEIVE_SCLK_TIM output, 32-pulse Pseudo-SCLK signal, feeds into RECEIVE_SPI as SCLK.

User Communication
ErrorCode_Bit_3: PE0

ErrorCode_Bit_2: PG8

ErrorCode_Bit_1: PG5

ErrorCode_Bit_0: PG6

LED_GREEN (Acquisition underway): PB0

LED_RED (Error detected – check bits 3-0): PB14

H7 rhs_acquisition
SPI (SPI3)

NSS (CS): PA4 – should be connected to Intan CS.

SCK (SCLK): PC10 – should be connected to Intan SCLK.

MISO: PC11 – should be connected to Intan MISO.

RHD/RHS STM32 Firmware Framework

 www.intantech.com ● support@intantech.com 20

intan
TECHNOLOGIES, LLC

MOSI: PB2 – should be connected to Intan MOSI.

Timing
Interrupt_Monitor: PD9 - written high each sample period, so its frequency represents amplifier sample rate.

Main_Monitor: PC8 - written high as long as main loop is processing, so its duty cycle approximates free CPU
clock cycles that could be used for other processing tasks.

User Communication
ErrorCode_Bit_3: PE0

ErrorCode_Bit_2: PG8

ErrorCode_Bit_1: PG5

ErrorCode_Bit_0: PG6

LED_GREEN (Acquisition underway): PB0

LED_RED (Error detected – check bits 3-0): PB14

Stimulation
Compliance Monitor: PG13 – written high when any channel’s compliance monitor is set high, indicating that
the electrode voltage becomes so high or low that it becomes impossible to deliver the specified current.

GPIO_EXTI13: PC13 – routed to blue button on NUCLEO boards by default, and during acquisition if
AUTO_STIM_CMD_MODE is defined, triggers stimulation.

RHD/RHS STM32 Firmware Framework

 www.intantech.com ● support@intantech.com 21

intan
TECHNOLOGIES, LLC

Connecting an Intan Chip
The ‘rhd_acquisition’ example code was designed to work with an Intan RHD2132 32-channel amplifier chip. The RHD2216 chip
can also be used, but unless the code is modified, half of the CONVERT commands per sample period will not correspond to real
channels. The ‘rhd2164_acquisition’ example code was designed to work with an Intan RHD2164 64-channel amplifier chip. The
‘rhs_acquisition’ example code was designed to work with an Intan RHS2116 amplifier chip.

Intan headstages are set to communicate using LVDS (low voltage differential signaling) signals on the SPI bus, while most
microcontrollers use standard non-LVDS SPI signals. To connect an Intan headstage to the STM32, you must either use an Intan
LVDS adapter board (part #C3490), or tie the LVDS_en pin on the Intan chip to ground to disable LVDS signaling. On most Intan
headstages the LVDS_en pin is hard-wired to VDD and it is impractical to cut the trace, but in the C3335 headstage (which uses
a RHD2132 chip with access to 16 of the 32 amplifiers), there is a zero-ohm resistor labeled R4 that can be removed to set
LVDS_en low. Similarly, the 64-channel headstages have a zero-ohm resistor labeled R4 that can be removed, but on the
RHD2164 LVDS_en has an internal pull-up resistor, so the LVDS_en pad should also be connected to GND. Finally, the 16-
channel RHS headstages have a zero-ohm resistor labeled R5 that can be removed to set LVDS_en low.

Note that if LVDS signaling is disabled, standard CMOS signaling is used instead, which makes reliable transmission of high-
frequency data over long wires challenging due to signal reflections. For this reason, if LVDS is disabled, it is critical to keep the
SPI wires between the MCU and the RHD chip as short as possible, and/or reduce the SPI data transmission rate.

Additional helpful accessories for development are the RHD SPI cable adapter (part #C3430) and the RHS SPI cable adapter (part
#M4430), which plugs into the SPI connector on an Intan headstage and breaks out each signal to a circuit board for easy soldering.
Each of the 12/16 signals is assigned its own hole for soldering, from B1 - B6/B8 (bottom row) and T1 - T6/T8 (top row). (The SPI
cable adapter is not necessary if the LVDS adapter board is used, because the LVDS adapter board includes an SPI cable
connector.)

Assuming LVDS signaling is disabled and SPI signals are kept short, the following connections can be used along with the example
program to interface an STM32U5/H7 with an RHD headstage through an SPI cable adapter board. Note that with LVDS disabled,
all the (–) polarity signals are unused, and the (+) polarity signals carry the standard CMOS signal.

For RHD:

RHD SPI adapter board
pin number

Signal

STM32U5 pin number STM32H7
pin number

B1 CS+ PA4 PA4
B2 SCLK+ PC10 PC10
B3 MOSI+ PC12 PB2
B4 MISO1+ PC11 (rhd_acquisition)

PA7 (rhd2164_acquisition)
PC11 (rhd_acquisition)

PD7 (rhd2164_acquisition)
B5 MISO2+ (unused) - -
B6 VDD 3V3 3V3
T1 CS– (unused) - -
T2 SCLK– (unused) - -
T3 MOSI– (unused) - -
T4 MISO1– (unused) - -
T5 MISO2– (unused) - -
T6 GND GND GND

RHD/RHS STM32 Firmware Framework

 www.intantech.com ● support@intantech.com 22

intan
TECHNOLOGIES, LLC

For RHS:

RHS SPI adapter board
pin number

Signal

STM32U5 pin number STM32H7
pin number

B1 VSTIM– (–7V) - -
B2 SCLK– - -
B3 SCLK+ PA1 PC10
B4 MOSI1– - -
B5 MOS1+ PA7 PB2
B6 MISO1– - -
B7 MISO+ PA6 PC11
B8 VDD (+3.3V) 3V3 3V3
T1 VSTIM+ (+7V) - -
T2 MISO2+ - -
T3 MISO2– - -
T4 MOSI2+ - -
T5 MOSI2– - -
T6 CS+ PA1 PA4
T7 CS– - -
T8 GND GND GND

RHD/RHS STM32 Firmware Framework

 www.intantech.com ● support@intantech.com 23

intan
TECHNOLOGIES, LLC

Description of User-Changeable Sections of Example Code
The example code was designed with user modifications in mind. While users are free to modify any and all files, there are three
specific files that are intended to be modified to most effectively alter the program’s functionality: userconfig.h, userfunctions.h,
and userfunctions.c. Each of these files and the changes that may be made to them are discussed in detail below. Note that the
.ioc file, which governs pin and peripheral configuration, is not included here and should instead be changed directly through
STM32CubeIDE’s UI if the user wants to use different I/O pins, different peripherals, or different parameters for those peripherals
(e.g., to change SPI baud rate or timer-generated sample rate).

userconfig.h
The user changes in this file are parameters set with #define preprocessor directives. These parameters are used throughout
various files of the project, but most aspects of the program that users will want to alter can simply be set here. For example, the
number of channels converted per sequence, how long to acquire data for, and which channels should have their samples stored.
Those that require more involved changes (for example, sample rate) get further explanation in their sections.
 #define USE_HAL

If this line is left uncommented, the code is compiled for compatibility with HAL (Hardware Abstraction Layer)
drivers for all peripherals. It is important that if this is left uncommented, the user navigates to the
STM32CubeIDE IOC viewer -> Project Manager -> Advanced Settings, and confirms that all the peripherals
that are directly used in user code (GPIO, GPDMA/DMA, USART, TIM, SPI) are set to HAL. In contrast, if this
line is commented out, the code is compiled for compatibility with LL (Low Layer) drivers, and these peripherals
should all be set to LL instead.

In general, HAL drivers are more user-friendly, simple to work with, and largely compatible even across
different STM32 series. LL drivers require more device-specific implementation of basic functions, and are
closer to direct manipulation of registers, so the code using LL tends to be more complex but specialized to
the chip, typically boosting performance.

#define OFFLINE_TRANSFER

If this line is left uncommented, the program will not transmit acquired data via USART during the main
acquisition loop, and only write acquired data to memory. Then, the program will escape the main acquisition
loop after NUMBER_OF_SECONDS_TO_ACQUIRE (default 0.5), and transmit acquired data from memory to
USART after acquisition has completed. Otherwise, if this line is commented out, the program will transmit
acquired data via USART immediately instead of writing it to memory, and the program will remain in the main
acquisition loop indefinitely.

 #define ERROR_DETECTED_PORT LED_RED_GPIO_Port

 #define ERROR_DETECTED_PIN LED_RED_Pin

These two lines specify the port and pin address of the “Error Detection” pin. By default, this is set to the pin
that routes to a red LED on the Nucleo board. If another pin is desired to be used instead, that pin’s Port and
Pin addresses should be changed here.

 #define SAMPLE_DC_AMPS (RHS only)

If this line is left uncommented, DC amplifiers are sampled alongside AC amplifiers for each CONVERT
command. Since MISO results are 32 bits, there both the AC and DC results for a single channel fit into a
single SPI word. If commented out, then the bits reserved for DC results are all 0s. A very small amount of
power may be saved by not sampling DC amplifiers, but there are no other advantages.

 #define TRADITIONAL_FAST_SETTLE (RHS only)

If this line is left uncommented, the traditional fast settle grounding switch governed by RHS register 10 is used
for any stimulation Segments where fast_settle is true. If commented, then the lower cutoff frequency switch
method governed by RHS register 12 is used instead. See the “Amplifier Stimulus Artifact Recovery” section
of the RHS chip datasheet for a detailed description of these two methods to recover the amplifiers from
stimulus artifacts.

RHD/RHS STM32 Firmware Framework

 www.intantech.com ● support@intantech.com 24

intan
TECHNOLOGIES, LLC

#define CHARGE_RECOVERY_SWITCH (RHS only)

If this line is left uncommented, the charge recovery switch governed by RHS register 46 is used for any
stimulation Segments where charge_recovery is true. If commented, then the current-limited charge recovery
circuit governed by RHS register 48 is used instead. See the “Charge Recovery Switch” and “Current-Limited
Charge Recovery Circuit” sections of the RHS chip datasheet for a detailed description of these two methods
to balance charge after stimulation pulses.

 #define CONVERT_COMMANDS_PER_SEQUENCE 32/16 (RHD/RHS)

This line specifies that for every sample period, this many CONVERT commands will be sent within a single
sequence. The order of these CONVERT commands can be customized in configure_convert_commands()
in userfunctions.c, but if left unchanged, this will be channels 0-31/15 in ascending order. Note that for
RHD2164 acquisition, each CONVERT command yields data from two channels, so if the default 32
CONVERT_COMMANDS_PER_SEQUENCE is used, all 64 channels are actually sampled.

 #define AUX_COMMANDS_PER_SEQUENCE 3/4 (RHD/RHS)

This line specifies that for every sample period, after the CONVERT commands, this many auxiliary commands
will be sent within a single sequence. The contents of these auxiliary commands can be customized in
configure_aux_commands() in userfunctions.c, but if left unchanged, this will have command 1 cycle through
all RHD/RHS registers, re-writing each according to software-configured values, and the remaining commands
simply repeat dummy READ commands on ROM registers.

For RHS, if AUTO_STIM_CMD_MODE is defined, then instead these 4 auxiliary command slots are used for
on-the-fly WRITE commands to stimulation control registers during acquisition so that pre-defined stimulation
sequences can be executed.

The total number of commands sent in a sequence of a single sample period is
CONVERT_COMMANDS_PER_SEQUENCE + AUX_COMMANDS_PER_SEQUENCE. By default, for RHD
this is 32 + 3 = 35, so at every sample period, there will be a sequence of 35 individual 16-bit SPI command
words. For RHS, this is 16 + 4 = 20, so that at every sample period, there will be a sequence of 20 individual
32-bit SPI command words.

 #define AUX_COMMAND_LIST_LENGTH 128

This line specifies how many auxiliary commands are contained in a single auxiliary command list. Each of
the AUX_COMMANDS_PER_SEQUENCE (by default three) has its own slot, and every sequence iteration
(which happens once per sample period), all slots advance by one through their lists. Once the end of the list
length (dictated by this parameter) is reached, all lists are reset to zero, and the next sequence all slots will
begin at the beginning of their list. In the default example, slot 0 reprograms most of the RHD RAM registers.
Because all lists are 128 commands long, when a specific write occurs it can be expected that exactly 128
samples later, that write will be repeated during the next cycle of the aux command list.

Note that all auxiliary commands will have this same length, with the exception of Zcheck_DAC command lists,
which have variable lengths because different DAC output signal frequencies will require different numbers of
commands. Progress through these command lists is tracked separately, and will loop back to the start at
some variable rate depending on frequency. All other command lists will loop back to their start every
AUX_COMMAND_LIST_LENGTH number of samples.

Also note that this does not apply to RHS when AUTO_STIM_CMD_MODE is defined, as instead of looping
through auxiliary command lists, the auxiliary command slots are used for on-the-fly register WRITE commands
to execute stimulation sequences.

 #define AUTO_STIM_CMD_MODE (RHS only)

If this line is left uncommented, the default 4 auxiliary commands per timestep are reserved for sending WRITE
commands in real time to the RHS chip. This is necessary to allow for user-specified stimulation sequences
to be executed, as the WRITE commands that take place here are what allow the stimulation registers (for
instance, stimulation magnitude, polarity, etc.) to change.

RHD/RHS STM32 Firmware Framework

 www.intantech.com ● support@intantech.com 25

intan
TECHNOLOGIES, LLC

If this line is commented out, then these command slots are instead occupied by the auxiliary command lists
set up in configure_aux_commands(), in userfuntions.c, effectively disabling stimulation and treating the
auxiliary commands the same as the RHD projects.

#define NUM_STIM_SEQUENCES 2 (RHS only)

This line specifies how many unique stimulation sequences can be set up. The default of two allows for two
unique channels (by default 8 and 9) to be set up for stimulation. While not typical, it’s possible for multiple
sequences to be assigned to a single channel – however, this leads to potential clashes if multiple sequences
are active at the same time for a specific channel, for which the user write some control logic to govern priorities.
The default of 2 can be increased arbitrarily, but significant amounts of memory must be dedicated to each
stim sequence, so ensure that both at compile time (compiler-level errors) and at runtime (red LED illuminating
with OutOfMemoryError occurring), no memory errors occur.

#define NUMBER_OF_SECONDS_TO_ACQUIRE 0.5

This line specifies how seconds of acquisition should occur before the main acquisition loop is escaped (only
valid if OFFLINE_TRANSFER is defined, otherwise this parameter has no effect). By default, after half a
second of acquisition has occurred (10000 samples from a single channel at the default sample rate of 20 kHz)
the main acquisition loop will exit, the data will be transmitted via USART, and the program will terminate. On-
chip RAM is limited, so setting this number excessively high will cause the chip to run out of memory during
program execution, resulting in the OutOfMemoryError.

 #define FIRST_SAMPLED_CHANNEL 8 (or) 5

This line specifies which of the 32 RHD or 16 RHS amplifier channels is selected as the starting point of the
group of channels that have their samples transmitted via USART. For rhd_acquisition, the default value is 8,
for compatibility with the RHD2132 16-channel headstage (which has 32 amplifier channels on the chip, but
only 16 of these, 8-23, are routed to the electrode connector on the PCB). For rhd2164_acquisition, the default
value is 5, an arbitrary choice. For rhs_acquisition, the default value is 8.

#define NUM_SAMPLED_CHANNELS 4

This line specifies how many of the 32 RHD or 16 RHS amplifier channels are actually sampled (acquired and
transmitted via USART). By default, this value is used to count up starting from the channel with number
FIRST_SAMPLED_CHANNEL. For instance, if FIRST_SAMPLED_CHANNEL is 8 and
NUM_SAMPLED_CHANNELS is 4, then channels 8, 9, 10, and 11 will be sampled and transmitted via USART.
For rhd2164_acquisition, due to DDR each CONVERT command results in samples from 2 channels, so the
actual number of acquired channels is NUM_SAMPLED_CHANNELS * 2, with each channel from 0-31 also
returning that channel + 32. In the above example, with an RHD2164 chip, channels 8, 9, 10, 11, 40, 41, 42,
and 43 will be sampled and transmitted via USART. Note that both USART throughput and RAM memory limit
how large this value can be, so caution is advised when increasing this number – make sure to monitor for any
runtime errors and verify data integrity if sampling additional channels.

userfunctions.h

This header file contains the declarations of some functions in userfunctions.c, but also a few static inline functions that are short
and simple enough to go directly in this .h file. Each of these functions is discussed below.
 static inline void wait_ms(int duration)

This function is called very early in the program’s life, before any initialization of the RHD chip, to give plenty
of time after program upload before any meaningful code is executed. It waits for ‘duration’ milliseconds, and
can be used to intentionally insert a delay. It is recommended to never call this from within an interrupt function.

Users are not likely to change this function, but may find it useful to call in certain situations where intentional
delay is desired, as long as any interactions with interrupts are accounted for.

static inline void enable_interrupt_timer(bool enable)

This function is called directly before the beginning of the main acquisition loop, with enable = true, and directly
after the end of the loop, with enable = false. The function either starts or stops the timer and its ability to issue

RHD/RHS STM32 Firmware Framework

 www.intantech.com ● support@intantech.com 26

intan
TECHNOLOGIES, LLC

an interrupt when the timer reaches its target counter value. The exact implementation differs based on HAL
and LL drivers, but generally the same behavior is achieved.

Users are not likely to change this function unless drastically changing how timers are used to generate
interrupts.

userfunctions.c

This file contains the implementations of various functions that are likely to be changed by the user to affect the behavior of the
example program. Each of these functions is discussed below.
 int loop_escape(void)

This function determines under what conditions the main acquisition loop is exited, and is called both within
the main loop and within the interrupt routine to make sure that this condition’s fulfilment is detected
immediately. When this function returns 1, the main loop exits. If the user wishes to permanently stay in the
main loop (for example, extended real time acquisition and transfer), commenting out OFFLINE_TRANSFER
will cause this function to always return 0. Otherwise, this function returns 1 once sample_counter exceeds
the number of samples corresponding to NUMBER_OF_SECONDS_TO_ACQUIRE, indicating that this
number of samples has been acquired (0.5 seconds at 20 kHz, or 10000 samples).

Users may want to change this function to check some other condition to exit the main acquisition loop.
 void write_data_to_memory(void)

This function writes NUM_SAMPLED_CHANNEL’s most recent CONVERT command results (starting at
FIRST_SAMPLED_CHANNEL) from the command_sequence_MISO array into the sample_memory array,
incrementing the sample_counter variable. For rhd2164_acquisition, this function first extracts two 16-bit
samples from each 32-bit MISO result before writing the samples to sample_memory. The +2 offset used to
index this MISO array is the result of the two-command pipeline delay explained in the Intan chip datasheet:
each MOSI command will see its MISO result two commands later, and so this function checks two results
further down the pipeline than the original index. Once the main data acquisition loop is escaped, the data in
sample_memory is transmitted at once via USART. This function only executes if OFFLINE_TRANSFER is
defined.

Users may want to change this function for a variety of reasons:

If data from different channels is desired to be saved (some configuration other than
NUM_SAMPLED_CHANNELS in order starting from FIRST_SAMPLED_CHANNEL), then the for
loop can be replaced with a more specific channel order.

If the auxiliary command slots are used for some more advanced purposes that require reading their
results, they can be read here (as demonstrated in the commented-out code in the function). Due
to the two-command pipeline, and the fact that these are the last three (for RHS, four) commands in
a command sequence, the result of AUX SLOT 1 (and for RHS, AUX SLOT 2) will appear in the
current command sequence, whereas AUX SLOT 2 and AUX SLOT 3 (or for RHS, AUX SLOT 3 and
AUX SLOT 4) will appear in the next command sequence.

 void transmit_data_realtime(void)

This function transmits data from the channels specified by NUM_SAMPLED_CHANNELS and
FIRST_SAMPLED_CHANNEL, in real time (once per sample period) via USART. This function only executes
if OFFLINE_TRANSFER is not defined, indicating that real time acquisition is desired. To achieve greater
efficiency, this function begins a non-blocking USART DMA transfer which must be managed and monitored
using interrupts – a simpler, blocking, standard USART transfer could also be used, but this will take
significantly longer to complete and run the risk of triggering an InterruptClip error.

Users may want to change this function if data from different channels is desired to be transmitted (some
configuration other than NUM_SAMPLED_CHANNELS in order starting from FIRST_SAMPLED_CHANNEL).
In this case, the for loop can be replaced with a more specific channel order. Note that this function executes
once per sample period, so if it takes too long, the next sample period will trigger before finishing. It is critical
to avoid this important error condition, referred to as InterruptClip, so care must be taken to ensure this function
does not take very long to complete. For example, make sure data is sent quickly at a high Baud rate. Users

RHD/RHS STM32 Firmware Framework

 www.intantech.com ● support@intantech.com 27

intan
TECHNOLOGIES, LLC

may also want to change this function if they intend to do something else with acquired data other than transmit
via USART.

 void transmit_data_offline(void)

This function transmits acquired data from the channels specified by NUM_SAMPLED_CHANNELS and
FIRST_SAMPLED_CHANNEL, once the entire acquisition period has finished and the main loop escaped, via
USART. Implementations using both HAL and LL drivers are included in this function, generally accomplishing
the same behavior. This function is only ever reached if OFFLINE_TRANSFER is defined.

Users may want to change this function if they have made some change to the way that data is saved, or intend
to do something else with acquired data other than transmit via USART.

 void configure_registers(void)

This function sets reasonable values for the registers in the global RHDConfigParameters or
RHSConfigParameters struct and writes them via SPI. These values are determined programmatically through
the functions write_initial_reg_values and set_default_rhd_settings or set_default_rhs_settings, in the
rhdinterface.c or rhsinterface.c and rhdregisters.c or rhsregisters.c files, before being written via SPI.

Users who want to customize the values of specific registers before acquisition will want to change this function
by altering parameters after write_initial_reg_values is called, and then writing a command specifically for each
changed registers. A commented-out example is included in this function, demonstrating how register 2 can
be set to allow for an impedance measurement to occur. (Register 3 should be changed sample-to-sample
via an aux command list.)

void create_manual_example_sequence(StimSequence* const sequence) RHS only

This function creates a stim sequence manually (as opposed to creating an auto-generated waveform
sequence with common shapes like biphasic or triphasic), allowing for precise user-control of all current
magnitudes, polarities, and durations with more options than the auto-generated waveforms sequences. The
default contents of this function demonstrate a four-segment sequence that loops between the final two
segments infinitely, and should be modified by the user to implement any stimulation sequence that complies
with the StimSequence specifications described above.

void configure_stim_sequences(void) RHS only

This function configures any user-defined stim sequences (either manually created with the above function, or
with an auto-generated biphasic or triphasic waveform) and initializes the stimulation sequencer in order to
begin executing these sequences once they are triggered. The default contents of this function demonstrate
an example single-pulse biphasic waveform on channel 8 and an example 5-pulse triphasic waveform train on
channel 9, and should be modified by the user to implement whichever stimulation sequence(s) are desired.

void handle_compliance_result(uint16_t compliance_data) RHS only

This function handles behavior when compliance data has been detected in the incoming MISO data. By
default, the Compliance_Monitor pin is written low if all no compliance monitor activation has occurred, and
high if at least one channel has had its compliance monitor activated, but any other custom behavior (for
example, halting the program) if a compliance monitor has been activated should be implemented here.

 void configure_convert_commands()

This function saves the CONVERT_COMMANDS_PER_SEQUENCE (for RHD 32, for RHS 16) CONVERT
commands into the command_sequence_MOSI array, which is used every sample period to send all 32/16
commands in a single sequence. This implementation should call create_convert_sequence to populate each
of these 32/16 commands as a (for RHD 16-bit, for RHS 32-bit) size SPI word that the Intan chip will recognize.
Passing NULL as the second parameter will automatically order these CONVERT commands from 0-31/15,
otherwise an array of uint8_t numbers can be passed to specify a specific order for these commands to
occur.
If CONVERT_COMMANDS_PER_SEQUENCE has been reduced for performance reasons, this array will
specify which channels are sampled at all.

RHD/RHS STM32 Firmware Framework

 www.intantech.com ● support@intantech.com 28

intan
TECHNOLOGIES, LLC

Users who want to alter the order of CONVERT commands or specifically leave out certain channels from
conversions will want to change this function by altering the argument to create_convert_sequence. A
commented-out example is included in this function, demonstrating how to create and pass a channel_numbers
array so that the sequence populating command_sequence_MOSI is ordered from 31/15-0 instead of 0-31/15.

 void configure_aux_commands(void)

This function sets up the AUX_COMMANDS_PER_SEQUENCE (for RHD default 3, for RHS default 4)
auxiliary command lists that are loaded into the end of the command_sequence_MOSI array, which is used
every sample period to send three auxiliary commands at the end of a single sequence. This implementation
should call some variation of a create_command_list function for each of the auxiliary command slots. A global
RHDConfigParameters/RHSConfigParameters struct is used to construct any auxiliary command lists that rely
on the configuration parameters.

Users who want to alter the number of auxiliary commands, or the contents of each command list, will want to
change this function by changing which create_command_list functions are called for each command slot. By
default, slot 1 is a register configuration command list, and remaining slots are dummy reads of ROM registers.
Since impedance check command lists have variable lengths (all other command lists are created to be
AUX_COMMAND_LIST_LENGTH commands long, by default 128), the process for creating an impedance
check command list also requires setting the variable zcheck_DAC_command_slot_position, and is
demonstrated in the commented-out section of this function.

For RHS, note that the aux command lists created here are only used if AUTO_STIM_CMD_MODE is not
defined – otherwise, these command slots are reserved for execution of WRITE commands necessary for real
time stimulation.

void transmit_dma_to_usart(const uint16_t *tx_data, uint16_t num_bytes)

This function uses DMA to transmit a certain amount of data from a memory pointer directly to USART. The
memory location and size of the data are passed as input arguments. It is non-blocking, so it only begins the
DMA transfer, and its progress must be monitored through the use of interrupts and the state of the ‘uart_ready’
variable.

Users who want to change how data is transmitted to USART may want to alter this function and related
USART/DMA interrupt functions, or if they wish to do something else with data instead of transmitting to
USART, they can remove this function entirely.

RHD/RHS STM32 Firmware Framework

 www.intantech.com ● support@intantech.com 29

intan
TECHNOLOGIES, LLC

Performance Considerations
This STM32 example code is designed to run comfortably with either HAL or LL drivers, achieving a sample rate of 20 kS/s – for
RHD, with 32 channels + 3 auxiliary commands and for RHS, with 16 channels + 4 auxiliary commands per sample period, with
most of the time during acquisition spent processing in the main loop: most CPU time is free for other processing tasks. However,
some applications might need further performance improvements, for example if 30 kS/s is desired, or if multiple Intan chips are
controlled with a single MCU. In these cases, there are some steps that can be taken to optimize performance for specific
applications.

HAL vs LL
HAL (Hardware Abstraction Layer) tends to have more simple function calls and is more uniform across all STM32 chip series,
sacrificing efficiency for simplicity. LL (Low Layer) allows for more efficient completion of given tasks, but requires a deeper
understanding of the individual STM32 registers. We recommend users start with HAL to gain a general understanding of how the
example program works, and then if more advanced understanding is required switch to LL to see how the general behavior
achieved by HAL can be implemented closer to the register level. LL functions tend to also be executed much faster than HAL
functions, so if the user reaches a performance bottleneck simply switching from HAL to LL may speed up execution dramatically.

The performance difference between HAL and LL implementations varies depending on project, and their differences can be
summarized with approximations of free clock cycles (what percentage of time the processor is free for other tasks during real time
acquisition and USART transmission), which were calculated by measuring the total percentage that Main_Monitor_Pin is high.
This is not a perfect representation of clock cycles, but a rough approximation due to Main_Monitor_Pin explicitly being written low
at the beginning of several functions in the program. This method is likely to over-estimate the number of free clock cycles using
HAL, as there are some HAL interrupt functions that are not easily editable by users and may consume additional clock cycles,
despite Main_Monitor_Pin remaining high. Our measurements of these free clock cycles are displayed below:

Project STM32 MCU HAL/LL Approx. Free Clock Cycles
rhd_acquisition STM32U5 HAL 91%
rhd_acquisition STM32U5 LL 92%
rhd_acquisition STM32H7 HAL 85%
rhd_acquisition STM32H7 LL 92%

rhd2164_acquisition STM32U5 HAL 75%
rhd2164_acquisition STM32U5 LL 79%
rhd2164_acquisition STM32H7 HAL 78%
rhd2164_acquisition STM32H7 LL 85%

Since RHS processing efficiency is less deterministic (results vary depending on the number, complexity, and trigger frequency of
stimulation sequences), they are not included in this table, but can easily be measured by the user using the method described
above while running and stimulating with specific sequences.

Changing Sample Rate
The sample rate is governed by the INTERRUPT_TIM (default TIM3) peripheral, specifically the clock input it receives and the
counter period, both of which are set in the .ioc file. The different projects in this firmware framework use a variety of system clock
speeds, so in turn they set different counter periods, but in all cases the counter periods are selected to result in the timer issuing
an interrupt at 20 kHz. If a different sample rate is desired, it must be changed through the .ioc file by altering the
INTERRUPT_TIM counter period and/or clock source.

Sample rates above 20 kS/s are likely to cause each sample period interrupt to clip into the next (SampleClip error), halting program
execution and illuminating the red LED. Each action of the sample processing routine will contribute to this, but the most likely
culprits are the SPI sequence taking too long to complete, any processing tasks that occur within each sample period (for example,
extraction of two 16-bit samples from each 32-bit MISO result from the DDR SPI in rhd2164_acquisition), or if
OFFLINE_TRANSFER is commented out, the USART transmission taking too long to complete. The SPI sequence’s speed is

RHD/RHS STM32 Firmware Framework

 www.intantech.com ● support@intantech.com 30

intan
TECHNOLOGIES, LLC

physically limited by the minimum time requirements outlined in the RHD datasheet, and the example program is already quite
close to these minimum requirements. The details of streamlining the SPI transfer are discussed below.

However, the simplest way to minimize the amount of data the command sequence must transmit, receive, and process, is to
reduce the number of commands. Since the total length of the command sequence is CONVERT_COMMANDS_PER_
SEQUENCE + AUX_COMMANDS_PER_SEQUENCE, reducing either of these will reduce the amount of time required for the
sequence to complete and the amount of received data. If fewer than 32 (or 16 for RHS) channels are required,
CONVERT_COMMANDS_PER_SEQUENCE can be reduced to only include the channels that are sampled. (In the default
example programs, only four of the 32/16 sampled channels actually have their data saved, or 4 x 2 = 8 sampled channels due to
DDR for rhd2164_acquisition.) Similarly, of the three (for RHS, four) auxiliary command slots that are included in the example
program, two are dummy command lists that only read ROM registers and act as placeholders for any other auxiliary command
lists, so many users will find AUX_COMMANDS_PER_SEQUENCE can be reduced. The first command slot continually
reprograms the RHD registers, which allows for quick recovery from any unexpected data corruption during acquisition, and is a
good idea for longer acquisition sessions but is not strictly necessary if the speed-up from removing a single SPI command word
is critical.

For RHS, if AUTO_STIM_CMD_MODE is defined, all present auxiliary command slots are reserved for the requisite WRITE
commands to allow for stimulation, and the number of these commands could be altered, but care must be taken; the file
stimscheduler.c has a function load_aux_commands() which assumes that 4 aux command slots are present, so this must be re-
written and the user should ensure that the rhsinterface.c file, which includes the function locate_compliance_result(), correctly
handles any change to how the compliance aux slot is set and how it is correctly identified after the two-command pipeline delay.

Streamlining SPI Communication
In addition to reducing the number of SPI words per sample period, some steps can be taken to make each SPI word faster.
Currently, the SPI achieves between a baud rate (the speed at which SCLK switches throughout a 16-bit word) between 20 and
24 Mbit/s by dividing the input clock signal by a prescaler – the specific baud rate varies between projects due to different clock
requirements for different projects. The maximum SCLK baud rate the Intan chip accepts is 25 MHz, as seen on the Intan chip
datasheets. So, maximum SPI efficiency includes setting the baud rate to as close to, without surpassing, 25 Mbit/s, and this may
be achievable for certain configurations by actually reducing the clock speed, and increasing the prescaler value. Obviously,
throttling the clock speed will reduce efficiency of all other processing tasks, and due to the example program by default using
DMA for SPI transfers (offloading much of the processing from the CPU) there is not necessarily a large benefit to boosting the
baud rate much, but the example program does not require very intensive processing generally so this may be worth trying to get
the SPI transfers done as quickly as possible within each sample period.

Another important note when discussing changing SPI timing is ensuring the minimum time requirements from the Intan datasheets
are met. If SPI speed is changed, the user must make sure these parameters (namely maximum SCLK frequency of 25 MHz and
CS stays high for 154 ns between words) stay valid. The example program already uses MIDI (Master Inter-Data Idleness), and
other SPI control fields like MSSI (Master SS Idleness) can be used to ensure the timing requirements are not violated.

The example code already uses DMA to initiate SPI transfers, monitoring the progress with interrupt flags, which does not physically
speed up the SPI transaction, but frees up the processor for other tasks while SPI transactions are underway.

Speeding up USART
When OFFLINE_TRANSFER is defined, the example code transmits data offline, waiting until a certain time period’s worth of data
(default 0.5) is acquired before transmitting any data via USART, but this behavior is replaced by transmitting via USART in real
time instead if OFFLINE_TRANSFER’s definition is commented out. For offline data transfer speed is unimportant, but if data
needs to be transferred alongside data acquisition, the USART transmission must be as fast as possible to avoid impacting data
sampling. While the details of USART communication are beyond the scope of this document, the higher the baud rate the more
quickly data can be sent. The example code uses USART baud rates between 6 Mbit/s and 12.5 Mbit/s which is more than
sufficient for streaming four channels’ data in real time (eight for rhd2164_acquisition), but if additional throughput is needed, the
user should consider parallelizing data transfer with additional USARTs or using other peripherals.

The example code already uses DMA to initiate USART transfers, monitoring the progress with interrupt flags, which does not
physically speed up the USART transaction, but frees up the processor for other tasks while USART transactions are underway.

RHD/RHS STM32 Firmware Framework

 www.intantech.com ● support@intantech.com 31

intan
TECHNOLOGIES, LLC

Optimizing Memory Usage
Depending on the limitations of the available hardware and any customizations to the software, it’s possible that the program will
run out of memory, either causing a build-time or a run-time error (OutOfMemoryError). This is more likely to happen with the H7
chip, with its 564 KB RAM vs. the U5 chip’s 2514 KB RAM. The more data that is required to be stored in the program’s memory,
the more of this RAM is occupied. The most obvious ways to reduce memory requirements are to slow down the sample rate, and
lower the number of sampled channels. For offline acquisition, reducing NUMBER_OF_SECONDS_TO_ACQUIRE will reduce the
amount of memory dedicated to storing data. In general, offline acquisition demands much more memory than real time acquisition,
as real time acquisition does not hold multiple timesteps worth of data at a single time. For stim, the StimSequence structures
used to sequence stimulation pulses are allocated significant amounts of memory, much of which may go unused depending on
desired stimulation behavior, so reducing the macros defined at the beginning of “stimscheduler.h” can free up a good amount of
memory.

RHD2000 Series Biopotential Recording Chips

 www.intantech.com ● info@intantech.com 32

intan
TECHNOLOGIES, LLC

Contact Information
This datasheet is meant to acquaint engineers and scientists
with the Intan STM32 interface code developed at Intan
Technologies. We value feedback from potential end users.
We can discuss your specific needs and suggest a solution
for your applications.

For more information, contact Intan Technologies at:

www.intantech.com
support@intantech.com

© 2024-2025 Intan Technologies, LLC

Information furnished by Intan Technologies is believed to be accurate and reliable. However, no responsibility is assumed by Intan
Technologies for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications
subject to change without notice. Intan Technologies assumes no liability for applications assistance or customer product design.
Customers are responsible for their products and applications using Intan Technologies components. To minimize the risks
associated with customer products and applications, customers should provide adequate design and operating safeguards.

Intan Technologies’ products are not authorized for use as critical components in life support devices or systems. A critical component
is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the
life support device or system, or to affect its safety or effectiveness.

intan
TECHNOLOGIES, LLC

	Features
	Applications
	Description
	Why is This Code Specific to the STM32U5 and STM32H7?
	SPI Communication Requirements

	How Does RHD2164 Firmware Differ from Other RHD Chips?
	How the DDR SPI Signals Differ from Standard SPI
	Configuration of Two SPI Peripherals
	Use of Timers to Generate a 32-pulse Pseudo-SCLK
	De-interleaving a Merged 32-bit Word into its 2 Component 16-bit Words

	How Does RHS Firmware Differ from RHD Chips?
	Communication with the Intan Chip
	Setting Stimulation Current Step Size
	Setting Stimulation Time Step Size
	How Stimulation Scheduling Works
	Creating Common Auto-Generated Sequences
	Triggering Stimulation from Interrupts
	Observing the Compliance Monitor

	Overview of Program Flow
	I/O Pins
	U5 rhd_acquisition
	U5 rhd2164_acquisition
	U5 rhs_acquisition
	H7 rhd_acquisition
	H7 rhd2164_acquisition
	H7 rhs_acquisition

	Connecting an Intan Chip
	Description of User-Changeable Sections of Example Code
	Performance Considerations
	HAL vs LL
	Since RHS processing efficiency is less deterministic (results vary depending on the number, complexity, and trigger frequency of stimulation sequences), they are not included in this table, but can easily be measured by the user using the method desc...
	Changing Sample Rate
	Streamlining SPI Communication
	Speeding up USART
	Optimizing Memory Usage

	Contact Information

